专利摘要:
肺組織を処置するために肺に蒸気を供給するための患者に特有の処置パラメータを決定するための方法及びシステムを提供する。一実施形態では、線維症を含み、それにより肺の少なくとも1つの区域の容積を低減する凝固壊死を引き起こすために、肺に蒸気が供給される。供給パラメータは、肺組織に誘発される損傷の所望の程度に応じて調整することができる。
公开号:JP2011515161A
申请号:JP2011501015
申请日:2009-03-23
公开日:2011-05-19
发明作者:エリック・ヘン;ダニエル・レディ;ディーン・コーコラン;ブライアン・クラン;ロバート・エル・バリー
申请人:アップテイク・メディカル・コーポレイションUptake Medical Corp.;
IPC主号:A61B17-00
专利说明:

[0001] 本出願は、「肺容積低減のための処置計画方法」と題された2008年3月21日に出願された米国仮特許出願番号第61/038718号の合衆国法典第35巻第119条の下での利益を主張する。]
[0002] 本出願はまた、「患者に特有の蒸気処置及び供給パラメータを決定する方法」と題された2007年10月22日に出願された米国仮特許出願番号第60/981701号の優先権を主張し、「患者に特有の蒸気処置及び供給パラメータを決定する方法」と題された2008年10月22日に出願された米国特許出願番号第12/256197号の一部継続出願である。これらの出願は、全体として参照することにより本明細書に取り入れられる。]
[0003] 本明細書に言及された全ての刊行物及び特許出願は、個々の刊行物又は特許出願が参照することにより取り入れられることを具体的に且つ個別に示されるように、同一程度まで参照することにより本明細書に取り入れられる。]
[0004] この発明は、医療装置、システム及び方法に関し、特に、高圧、高温の蒸気を患者の肺の1つ若しくは複数の組織目標に供給するための気管支内カテーテル、システム及び方法に関する。]
背景技術

[0005] 慢性閉塞性肺疾患(「COPD」)は、肺の微細内部構造が時間とともに破壊され、肺の内部に大きい空洞を作り出し、吸入空気の捕捉及び肺の弾性の喪失(過膨張)を引き起こす肺の慢性疾患である。(慢性気管支炎及び肺気腫を含む)COPDの一般的な症状は、息切れ、痰の過剰産生及び慢性咳である。COPDに苦しむ人はまた頻繁且つ突然の症状の悪化(増悪)を経験し得る。]
[0006] COPDは、刺激の源(例えば、たばこの煙)がもはや存在しない後でさえ長期にわたる刺激がしばしば持続する慢性炎症を引き起こすような肺及び気道の病理学的変化によって特徴づけられる。COPDは、進行性疾患で最終的に生命にかかわる疾患である。処置(treatment)はその進行を遅くすることができるが、現在解決法は存在しない。]
[0007] COPDの最も危険な因子は環境である。COPDの最も一般的な原因は、間接(受動)喫煙を含むたばこの煙への曝露である。屋内及び屋外の大気汚染への曝露、あるいはちり、微粒子又は有害な蒸気若しくはガスへの職業上の曝露もまた、COPDの原因になる。小児時における頻繁な下気道感染もまたCOPDに対する感受性を増大させる可能性がある。]
[0008] 肺気腫を含む慢性閉塞性肺疾患(COPD)の処置のための最新ガイドラインは、危険因子への患者の曝露を直ちに低減することを要求する。危険因子は、たばこの喫煙及び微粒子又は有害ガスへの職業上又は環境上の曝露を含む。禁煙は、患者の教育及びカウンセリングを通じて実現され得る。薬物療法介入もまた有効であり得る。]
[0009] COPDが進行すると、薬物療法が開始され得る。安定なII期(中等症)及びIII期(重症)のCOPDの処置のための標準治療は、経口投与される、あるいは噴霧器によって吸入されるβ2作動薬、抗コリン薬及びメチルキサンチンを含む1つ若しくはそれ以上の気管支拡張剤を用いた処置からなる。しかしながら、FEV1を大幅に改善することができる、又は気腫性患者の肺機能における容赦のない衰えを抑制する、あるいは遅くすることができるという証拠がない。従って、COPDの薬物療法は、合併症を予防する、運動耐性を増大させる、及びCOPDの増悪を処置するために症状の軽減を目的として主として使用される。]
[0010] 吸入グルココルチコイドのみを用いた処置、又は吸入グルココルチコイドを気管支拡張剤療法と組み合わせた処置は、増悪の頻度を低減することができ、重症又は最重症のCOPDの患者に指示され得るが、グルココルチコイドを用いた長期にわたる処置はステロイド性筋疾患に関係するので、軽症又は中等症のCOPDの患者には薦められない。]
[0011] 運動訓練計画、栄養カウンセリング及び患者教育からなる呼吸リハビリテーションは、COPDの症状を処置するために、また、特にII期(中等症)、III期(重症)及びIV期(最重症)のCOPDの患者の間で患者の全体的な生活の質を改善するために使用される。]
[0012] 酸素(O2)を用いた長期(1日15時間以上)にわたる療法は、COPDの患者の生存期間を延長させ、血行動態、運動耐性、肺機能を改善することを示し、COPD誘発性低酸素血症によって生じた知能の欠損を改善することができる。COPDの患者は、主として酸素飽和度の増加を通じて長期にわたる酸素療法から恩恵を受ける。]
[0013] 肺気腫の生理学的影響(気腔の拡大、拡散能力の破壊、結果として生ずる呼気流量の減少を有する弾性収縮力の減少、過膨張、空気の捕捉)を処置するために1つ若しくは両方の肺から組織が切除される肺容量減少手術(LVRS)は、ブランティガン(Brantigan)とミューラー(Muller)によって1957年に被験者に始めて行われた。しかしながら、患者報告の症状の改善にも拘わらず、高い手術死亡率(18%)がCOPDのための処置として受け入れることを妨げた。]
発明が解決しようとする課題

[0014] 最近になって、前向き無作為化試験を含むCOPDの患者の一連の臨床研究は、LVRSが肺機能、ガス交換及び生活の質(QOL)尺度において恩恵をもたらすことを示した。全米肺気腫処置試験(NETT)は、LVRSの有無に拘わらず、呼吸リハビリテーションを受ける重症肺気腫を有する患者1218人を無作為に特定した。研究結果は、薬物療法とLVRS(15%対3%;P<0.001)を共に受ける患者の間で、運動能力において統計的に著しい改善を示し、事前に指定されたサブグループの分析は、手術による死亡の危険性が高いと考えられる主に上葉肺気腫と低い基本運動能力とを有する患者において24ヶ月延命効果を示した。しかしながら、サブグループの分析はまた、上葉性疾患と高い初期運動能力とを有する危険性の高い患者が死亡率の増加及び著しい恩恵の欠如のためLVRSの対象とならないことを提案した。]
[0015] NETTの被験者の長期にわたる追跡調査は、薬物療法のみのグループに比べて、運動能力及び健康関連QOLの継続的な改善と同様に、薬物療法全体に加えてLVRSに割り当てられた患者の生存利益を示した。LVRSを受ける危険性の高い/高い運動能力の被験者のサブグループは生存利益を示さなかったが、運動能力の改善を示した。]
[0016] これらの結果に基づいて、LVRSは、前述のサブグループの患者のために肺気腫の緩和処置として薦められた。肺気腫の処置のためのLVRSはまた、標準的薬物療法に比べて高価な処置であり、より多くのデータが利用できるまで該処置の費用対効果は不明確なままである。]
[0017] 肺気腫の患者を処置する薬理学的アプローチは、大規模な無作為研究において著しい改善を引き起こさなかった。LVRSは有効性効果を有するが、高い死亡率及び罹病率は、高コストを引き起こす。従って、有意な効果を提供するものの死亡率及び罹病率を減少させる(気管支鏡LVRなどの)低侵襲的アプローチが望まれる。]
[0018] (プラグ、バルブ及びステントを含む)幾つかの気管支鏡LVRアプローチは、現在研究中である。最も多くの気管支鏡アプローチは、肺の気腫領域を提供する主要な気道の遮断又は閉塞を含む。一方向気管支内バルブの移植を通じて実現される気管支鏡LVRは、単一施設予備研究及び大規模多施設研究で被験者において調査された。この処置では、一方向気管支内バルブは、1つ若しくは複数の気腫性肺領域の気道に気管支鏡で供給(deliver)される。前記バルブの目的は、LVRSによって実現されるものと同様の肺の領域の虚脱又は無気肺を作り出すことである。気管支内バルブを用いた最初の多施設経験は、前記療法は、90日死亡率が1.02%でNETTのLVRS研究において報告された7.9%に比べて良好な耐容性を示すことを提案した。98名の患者のうち合計53名の患者(54%)は90日におけるFEV1において臨床的に有意な改善を示さず、23%のみが運動耐性の改善を示した。改善についてのこの欠如は、主要な気道の閉塞にも拘わらず肺葉虚脱を妨げる側副換気に恐らく原因がある。]
[0019] 側副換気の存在にも拘わらず堅実なLVRを作り出す気管支鏡アプローチが望まれる。あらゆる患者を安全且つ有効に処置するために、必要であれば調整することができるアプローチがまた望まれる。]
[0020] LVRを扱うことに加えて、肺腫瘍、結節、浸潤、細菌、菌類、ウィルス並びに他の疾患及び状態など、種々の他の肺の状態を処置することができるアプローチがまた望まれる。]
課題を解決するための手段

[0021] 本発明は、概括的には肺の組織を処置するために蒸気を使用することに関する。この療法は、気管支鏡熱蒸気焼灼又はBTVAと呼ばれる場合がある。]
[0022] 本発明の1つの態様は、肺の容積を低減するために患者の肺の組織にエネルギーを適用する方法であって、以下のステップ、すなわち、処置される肺組織を含む肺の少なくとも1つの領域(例えば、肺の区域又は亜区域など)を認定するステップと、前記肺の領域に供給装置を挿入するステップと、約5カロリー/グラムから約40カロリー/グラムの間の用量で前記処置される肺組織に前記供給装置を通じて蒸気を供給するステップであって、蒸気が液体に相変化し、相変化の間に放出されるエネルギーが肺組織に損傷を与えるために肺組織に移動されるステップと、を含む方法を提供する。幾つかの実施形態は、蒸気を供給する前に、例えば患者の外部に配置された蒸気発生器において少なくとも100℃まで蒸気を加熱するステップを含む。]
[0023] 供給される蒸気の用量の効果は変化し得る。幾つかの実施形態では、供給される用量は、約4週間から約8週間の期間にわたって肺の容積を低減させる。幾つかの実施形態では、供給される用量は、膠原の縮小及び/又は変性から直ちに肺の容積を低減させる。組織に移動されるエネルギーはまた、肺の領域の容積を有効に低減するために恐らく続いて線維症がある肺組織の凝固壊死を引き起こし得る。幾つかの実施形態では、組織に移動されるエネルギーは、実質的に熱固着を引き起こさない。幾つかの実施形態では、供給ステップは、肺の組織の微小血管系を除去するステップを含む。]
[0024] 幾つかの実施形態では、蒸気を供給するステップは、約20カロリー/秒から約200カロリー/秒の間の流量で蒸気を供給するステップを含む。蒸気は、幾つかの実施形態では、約2秒から約30秒の間の継続期間、又は場合によって約4秒から約10秒の間の継続期間、供給され得る。供給される用量は、例えば、約5カロリー/グラムから約20カロリー/グラムの間、約5カロリー/グラムから約10カロリー/グラムの間、又は約20カロリー/グラムから約40カロリー/グラムの間であり得る。]
[0025] 本発明の別の態様は、選択的に肺組織に損傷を与えるために蒸気を用いて肺組織にエネルギーを適用するための処置パラメータを決定する方法であって、以下のステップ、すなわち、処置される肺組織を含む肺の少なくとも1つの領域を撮像するステップと、前記撮像に基づいて前記処置される領域の肺組織のパラメータ(例えば、質量及び/又は容積など)を決定するステップと、肺組織への特有の程度の損傷を引き起こすために前記組織を処置するための安全で有効な用量を決定するステップと、前記肺組織のパラメータ及び前記用量に基づいて前記領域に供給されるエネルギーの量を決定するステップと、供給されるエネルギーの量及び蒸気供給システムのエネルギー流量に基づいて蒸気を供給する継続期間を決定するステップと、を含む方法を提供する。幾つかの実施形態では、肺組織への特有の程度の損傷は凝固壊死を含み、該凝固壊死は、幾つかの実施形態では、肺の容積を有効に低減する肺組織の線維症を引き起こし得る。]
[0026] 本発明の幾つかの実施形態はまた、前記供給割合で前記決定された継続期間、前記肺の区域に蒸気を供給するステップを含む。蒸気は、該蒸気を供給する前に少なくとも100℃まで加熱され得る。幾つかの実施形態では、蒸気を供給することは、蒸気を液体に変化させ、相変化の間に放出されるエネルギーが、前記区域または亜区域の肺組織に移動される。]
[0027] 幾つかの実施形態では、処置される肺の少なくとも1つの領域を撮像するステップは、肺の少なくとも1つの区域又は亜区域のCTスキャンをとるステップを含む。処置される肺の少なくとも1つの区域又は亜区域は、RB1、RB2、RB3、LB1、LB2及びLB3の少なくとも1つであり得る。]
[0028] 幾つかの実施形態では、供給されるエネルギーの量を決定するステップは、区域又は亜区域の質量と用量とを掛け合わせるステップを含む。幾つかの実施形態では、蒸気を供給する継続期間は、供給されるエネルギーの量を供給システムのエネルギー供給割合により分けることによって決定される。幾つかの実施形態では、例えば、前記組織を処置するための安全で有効な用量は、約5カロリー/グラムから約40カロリー/グラムの間であり、供給システムのエネルギー流量は、約20カロリー/秒から約200カロリー/秒の間である。]
[0029] 本発明のまた別の態様は、肺の容積を低減するために蒸気を用いて肺の組織にエネルギーを適用するための処置パラメータを決定する方法であって、以下のステップ、すなわち、肺組織の処置される少なくとも1つの区域を撮像するステップと、前記撮像に基づいて前記処置される区域の質量を決定するステップと、前記肺組織への特有の程度の損傷を引き起こすために前記処置される区域を処置するための安全で有効な用量を決定するステップと、前記処置される区域の質量及び前記用量に基づいて前記処置される区域に供給されるエネルギーの量を決定するステップと、供給されるエネルギーの量及び蒸気供給システムのエネルギー流量に基づいて蒸気を供給するための継続期間を決定するステップと、を含む方法を提供する。]
[0030] 1つの実施形態では、前記方法はさらに、前記処置される少なくとも1つの区域の質量を前記処置される少なくとも1つの区域内の空気の質量により分けることによって少なくとも1つの組織と空気の割合を計算することを有する。幾つかの実施形態では、蒸気は、前記組織と空気の割合が所定のレベルを超える場合、前記供給割合で前記決定された継続期間、前記処置される区域に供給される。1つの実施形態では、前記所定のレベルは4%である。]
[0031] 別の実施形態では、蒸気は、肺の上葉の組織と空気の割合が肺の下葉の組織と空気の割合より小さい場合、肺の上葉に供給される。別の実施形態では、蒸気は、肺の下葉の組織と空気の割合が肺の上葉の組織と空気の割合より小さい場合、肺の下葉に供給される。]
[0032] また別の実施形態では、蒸気は、第1の肺の組織と空気の割合が第2の肺の組織と空気の割合より小さい場合、第1の肺に供給される。1つの実施形態では、蒸気は、第1の肺の上葉に供給される。別の実施形態では、蒸気は、第1の肺の下葉に供給される。]
[0033] 幾つかの実施形態は、前記処置される肺組織のかん流を決定する。幾つかの実施形態では、蒸気は、肺の上葉のかん流が肺の下葉のかん流より少ない場合、肺の上葉に供給される。別の実施形態では、蒸気は、肺の下葉のかん流が肺の上葉のかん流より少ない場合、肺の下葉に供給される。]
[0034] 別の実施形態では、肺のかん流の不均一性が決定される。1つの実施形態では、蒸気は、第1の肺のかん流の不均一性が第2の肺のかん流の不均一性より大きい場合、第1の肺に供給される。]
[0035] 1つの実施形態は、選択的に肺組織に損傷を与えるために、処置パラメータを決定し、蒸気を用いて肺組織にエネルギーを適用するためのシステムであって、該システムは、処置される肺組織の少なくとも1つの区域を撮像するように構成される撮像システムと、加熱された水蒸気を発生させるように構成される蒸気発生器と、前記蒸気発生器に連結される供給カテーテルと、前記システムに一体化される電子制御装置とを有し、該電子制御装置は、前記撮像に基づいて前記処置される区域の質量を決定し、肺組織への特有の程度の損傷を引き起こすために前記処置される区域を処置するための安全で有効な用量を決定し、前記処置される区域の質量及び前記用量に基づいて前記処置される区域に供給されるエネルギーの量を決定し、供給されるエネルギーの量及び蒸気供給システムのエネルギー流量に基づいて蒸気を供給するための継続期間を決定するように構成される。]
[0036] 本発明の新規な特徴は、特に以下の請求項に記載される。本発明の特徴及び利点のより良い理解は、本発明の原理が用いられる実施形態を記載する以下の詳細な説明及び添付図面を参照して得られる。]
図面の簡単な説明

[0037] 治療蒸気を発生させて肺に供給するためのシステムを示す図である。
図1のシステムの蒸気供給カテーテルの構成部品の詳細を示す図である。
図2の蒸気供給カテーテルの詳細を示す図である。
図1のシステムとともに使用するためのユーザ・インターフェースを示す図である。
患者の肺を処置するために使用する図1のシステムを示す図である。
患者の肺の概略図である。
肺の組織を処置するために蒸気供給パラメータを決定するための例示的方法を示すフローチャートである。
肺の組織を処置するために蒸気供給パラメータを決定するための例示的方法を示すフローチャートである。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。
肺の組織に蒸気を供給するときに医師を援助するための処置計画又は処置ガイドを示す図である。] 図1 図2
実施例

[0038] 本発明は、概括的には肺の組織を処置するために蒸気を使用することに関する。この療法は、気管支鏡熱蒸気焼灼又はBTVAと呼ばれる場合がある。一般に、気腫性肺領域へのエネルギーの移動は、前記領域に流れる血液の量を低減する微細な血管新生の焼灼を引き起こし得る。肺の機能不全領域への換気の減少とともに血流におけるこの減少は、肺のより良い機能領域へのより多い血流を引き起こし得る。これは、拡散能力(DLCO)の増加を引き起こすことができる。DLCOの増加は、運動能力の増加、呼吸困難(息切れ)の減少及び酸素補給の必要性の低下を含む患者への幾つかの潜在的利益を引き起こし得る。]
[0039] 蒸気の適用は、残気量(RV)、FEV1、FRC又は他の機械的肺機能量における測定可能な変化なしに拡散能力(DLCO)の増加を引き起こし得る肺流量及び/又は実質容積又は質量の増加を引き起こし得る肺の成長を引き起こすことができる。DLCOの増加は、運動能力の増加、呼吸困難の減少及び酸素補給の必要性の低下を含む患者への幾つかの潜在的利益を引き起こし得る。LVRによる血流量及び換気の減少はまた、かん流と換気の整合(VQ整合)の増加を引き起こし得る。]
[0040] さらに具体的に言えば、本発明は、前記組織に所望の程度の損傷を誘発するために肺に蒸気を供給するための供給パラメータ(例えば蒸気用量、供給システムの流量)を決定することに関する。前記組織に移動されるエネルギーは、損傷及びそれに続く肺の処置される領域内又は肺全体にわたって新しい肺の組織に刺激を与える肺の成長信号を引き起こす。ここで使用されるような肺の処置は、肺の組織における実質的に即時の効果及び長時間にわたる効果について言及するものであり、週、月又は年でさえあり得る。供給パラメータは、処置される肺の量(例えば、質量又は容積)及び前記組織への所望の程度の損傷(例えば、凝固壊死、熱固着)に依存し得る。]
[0041] 肺の容積を低減するために線維症を引き起こすように肺へ蒸気を供給することは、蒸気処置の1つの使用であるものの、本発明は種々の状態及び疾患を処置するために肺に蒸気を投与することを含むことが理解される。例えば、蒸気は、腫瘍、肺癌、孤立性肺結節、肺膿瘍、結核及び他の肺疾患の処置に使用することができる。処置される状態、具体的には肺の組織への所望の程度の(即時及び/又は長期的な)損傷は、前記処置及び供給パラメータを部分的に決定することができる。]
[0042] 蒸気処置の望ましい結果であり得る1つの種類の損傷は、凝固壊死又は線維症である。凝固壊死領域は、十分な熱による組織の損傷が熱固着を引き起こすことなしに細胞死を引き起こすように起こった組織によって一般に特徴づけられる。その後に、前記組織は、再吸収と、それに続く線維症(瘢痕)形成を有する創傷治癒の古典経路とを経験する。ここに記載されるLVRは、蒸気処置に続く肺組織の線維症によって一般に実現される。]
[0043] 熱固着は、化学的(ホルマリン)固定に形態学的に似た症状を呈するように十分な温熱曝露を受けた壊死組織によって一般に特徴づけられる。前記曝露は、致死損傷後の酵素による組織の自己消化及び破壊の自然過程が抑制されるように、その場で細胞及び細胞外基質タンパク質を完全に変性するのに十分である。結果として、前記組織は、再吸収及び創傷治癒を介して経路を作り直すことを抑え、異物と類似する物体によって一般に囲まれる。]
[0044] 肺組織において誘発することが望まれ得る他の種類又は程度の損傷は、肺水腫、ヒアリン膜、急性若しくは慢性炎症、閉塞後変化、無気肺、及び組織学的損傷のほとんどない気管支、細気管支並びに肺胞実質を含む。]
[0045] 蒸気が目標肺組織に供給されるとき、蒸気から液体に相変化を受ける。この相変化の間に放出される熱エネルギーは、肺組織に移動される。これは、急速に該組織を熱し、(線維症に続く)凝固壊死、熱固着、組織の虚脱、収縮、新生内膜過形成のような損傷、又は前述したものなどの肺組織への何か他の望ましい損傷を誘発する。熱エネルギーはまた、熱蒸気及び/又は蒸気凝縮液から前記組織に導かれ得る。]
[0046] 壊死に続く線維症は、(生育不能な肺組織の容積低減のため)肺の容積を減少させ得る。肺の大きさを減少させることにより、残りの肺及び周囲の筋肉(肋間部及び隔膜)は、より効率的に機能することができる。これは、呼吸をより楽にし、呼吸当たりの容積の増加及び酸素の取り込みの増加を含む改善された呼吸機構を可能とする改善された生活の質を患者が実現することに役立ち得る。]
[0047] 肺の容積はまた、膠原の収縮及び/又は変性から(長期間にわたって容積の減少を一般に引き起こす線維症とは対照的に)直ちに少なくされ得る。]
[0048] LVRの程度は、一般に用量に依存する。用量が多くなればなるほど、肺の容積はより少なくされる。LVRの程度は、処置後、数週間又は数ヶ月まで決定されないかもしれない。幾つかの実施形態では、LVRの用量依存性は、約2ヶ月から約4ヶ月まで明らかにされ始めないかもしれない。このLVRの緩やかな減少は、気腫性患者において気胸を作り出すことができる既存の癒着の急性断裂を防止又は最小にするのに役立ち得る。]
[0049] 肺において容積を低減するためにここに記載される蒸気処置を使用する他の利点は、この技術が側副換気の存在下でさえ効果的な方法であり得ることである。]
[0050] (処置される肺の状態に依存する)所望の程度の損傷に加えて、処置される肺の組織の量は、処置パラメータを部分的に決定する。例えば、供給パラメータは、肺葉の区域又は亜区域を処置することとは対照的に肺葉全体を処置することによって異なることがある。ここで使用されるように、肺組織は、限定するものではないが、例えば腫瘍などの肺内に又は肺上に存在し得る何か他の成長物又は肺でない組織に加えて本来の肺組織を共に含む。]
[0051] 図1から図5は、蒸気を発生させて処置される肺組織に供給する例示的システム及び該システムの構成部品を示す。システム10は概括的には、蒸気発生器12、手持部品14及び供給カテーテル16を有している。前記システムはさらに、CT、MRI、超音波、又はX線撮像システムなどの医療撮像システム17を含み得る。] 図1 図5
[0052] 蒸気発生器12は、管18によって手持部品14に取り付けられる。前記発生器は、液体水(又は塩水あるいはエタノールなどの他の生体適合性液体)及びスチーム(不図示)、水を熱するための発熱体(不図示)、センサー(不図示)及びバルブ(不図示)を含む圧力容器20を有する。手持部品14は、カテーテルの近位端22に連結される。]
[0053] カテーテルは一般に、被験者の肺の目標区域又は亜区域に気管支鏡(不図示)を介して加熱された水蒸気(スチーム)を供給するために使用される。カテーテル16は一般に、可撓軸24と、カテーテルの遠位端28に、又は該遠位端28に少し近接した位置に位置付けられた閉塞バルーン26から構成される。]
[0054] 蒸気発生器は、正確な量のスチーム又は蒸気を発生させてカテーテルを介して供給することができる電子的に制御された圧力容器である。幾つかの実施形態では、蒸気は一般に約100℃から約175℃の間に加熱される。オペレータは、フロントパネルのユーザ・インターフェースを使用して(その決定が以下で記載される)蒸気処置の流量レベルと継続期間とを選択することができる。例示的ユーザ・インターフェースが図4に示されており、該例示的ユーザ・インターフェースは、別の構成要素の中に蒸気の供給時間及び/又は流量レベルを調整するための制御を含み得る。別の実施形態では、蒸気処置の流量レベルと継続時間とは、以下に記載される、測定された患者のパラメータに基づいてシステム10又は発生器12に一体化された電子制御装置(不図示)によって自動的に選択され得る。流量レベルと供給時間の組み合わせは、患者に特有の量の蒸気療法を供給する。患者への蒸気の供給は、好ましくは手持部品を使用してオペレータによって手動で引き起こされるものの、前記発生器の電子制御装置は、ソフトウェアの安全性を確保するために、温度、圧力、水位を連続して観測することができる。] 図4
[0055] カテーテルは、好ましくは再利用不可能で殺菌して供給される。カテーテルは、目標気道を閉塞し、目標肺区域又は亜区域に蒸気発生器からの1用量の蒸気を供給するための構成部品から構成され得る。図2及び図3に示すように、マニホールド30が、カテーテルの近位端に位置付けられ、カテーテルを手持部品に連結するための急速継手34と同様に、柔軟なバルーンを膨張させるためにルアーコネクタ36に標準的な注射(不図示)を取り付けるための栓32を含み得る。カテーテル軸は、気管支鏡を通じてカテーテルを供給することを許容するように構成され、カテーテルは、目標気管支の適切なシールを許容するためにカテーテル軸の遠位端の近くにバルーンを有し得る。] 図2 図3
[0056] 図5は、患者の肺40を処置する例示的方法を示す。前記方法は、肺の1つの区域又は亜区域などの処置の目標となる肺の領域の中へ可撓軸24を前進させるステップを有し得る。可撓軸の遠位端にある又は該遠位端の近くにある閉塞バルーン26は、肺の中の気道をシールするために膨張させられ得る。蒸気42は次に、可撓軸の遠位端から処置するための目標となる肺の領域に供給され得る。目標組織に蒸気を供給することは、空気嚢又は肺胞44の組織、終末細気管支の組織及び側副通路46の組織に損傷を与えることを目的としている。その後、バルーンが収縮させられ、カテーテルが引き抜かれ得る。] 図5
[0057] 目標組織に所望の損傷(例えば、壊死/線維症、熱固着)を引き起こすために、処置パラメータを決定し、肺組織に蒸気エネルギーを適用する方法が、ここで記載される。]
[0058] 肺の構造を理解することは、以下の処置の方法の説明に役立つであろう。図6は、患者の左肺及び右肺の前面像を示す概略図である。左肺は、2つの肺葉、すなわち上葉と下葉に分けられ、右肺は、3つの肺葉、すなわち上葉と中葉と下葉に分けられる。図6に示すように、左肺は三次気管支とも呼ばれる8つの区気管支を含み、右肺は10の区気管支を含む。] 図6
[0059] 左肺の上葉の区気管支は、尖区(LB1)、後区(LB2)、前区(LB3)、上舌区(LB4)及び下舌区(LB5)の区域を有する。LB1及びLB2の区域はまた、肺尖後区(LB1+2)とも呼ばれ得る。左肺の下葉の区気管支は、上区(LB6)、前肺底区(LB7)、内側肺底区(LB8)、外側肺底区(LB9)及び後肺底区(LB10)を有する。LB7及びLB8の区域はまた、前内側肺底区(LB7+8)とも呼ばれ得る。]
[0060] 右肺の上葉の区気管支は、尖区(RB1)、後区(RB2)及び前区(RB3)の区域を有する。右肺の中葉の区気管支は、外側区(RB4)及び内側区(RB5)の区域を有する。右肺の下葉の区気管支は、上区(RB6)、前肺底区(RB7)、内側肺底区(RB8)、外側肺底区(RB9)及び後肺底区(RB10)の区域を有する。]
[0061] 図7は、肺の組織の容積及び/又は質量に基づいて患者の肺を処置するために処置パラメータを決定する方法を記載するフローチャート700である。ステップ702において、前記方法は、処置される肺の状態又は疾患(例えば、COPD、肺腫瘍)を認定することを含み得る。COPD又は肺腫瘍などの肺の状態又は疾患を認定することは、周知の医学的検査及び処置によって実現することができる。] 図7
[0062] ステップ704において、前記方法はさらに、処置される肺の少なくとも1つの肺葉、区域又は亜区域を撮像することを含み得る。処置される肺の区域又は亜区域を撮像することは、限定するものではないが、CT、MRI、超音波及びX線などの多くの医学的撮像技術又は医学的撮像システムによって行うことができる。]
[0063] ステップ706において、前記方法は、前記撮像に基づいて前記処置される肺葉、区域又は亜区域の肺組織の量(例えば、質量又は容積)を決定することを含み得る。処置される各肺における組織の量の容積及び/又は密度の決定は、(米国アイオワ州アイオワシティにあるビーダ・ディアグノスティックス社(VIDA Diagnostics, Inc.)による)VIDA Emphysema Profiler 1.1ソフトウェアのようなソフトウェアを使用して行うことができる。CTを使用した肺気道区域における更なる情報は、胸腔内の気道支樹、すなわち低用量CTスキャンからの区分け及び気道形態分析に見ることができる。チレン(Tschirren)、ジェー・ホフマン(J. Hoffmann)、イー・エー・マックレナン(E. A. McLennan)、ジー・ソンカ(G.Sonka)によるM.Medical Imaging,IEEE Transactions、2005年12月、第24巻、12号、p.1529−1539。患者の気道のモデルを作ることに加えて、(2006年10月2日に出願された米国特許出願番号第11/542016号に記載されるアルゴリズムと同様の)VIDAソフトウェアはまた、患者の肺の異なる区域のパラメータを作り出すことができる。しかしながら、他のソフトウェア、アルゴリズム又は方法がまた、各肺、肺葉及び/又は区域の全容積を決定するために使用され得る。1つの実施形態では、図1に示す発生器12の電子制御装置は、処置される肺葉、区域又は亜区域の肺組織の量を決定することができる。別の実施形態では、肺組織の量は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0064] ステップ708において、前記方法はさらに、基礎とされる肺葉、区域又は亜区域に供給される有効な蒸気容量を決定することを含み得る。肺組織に適用される安全で有効なエネルギー用量(例えば、カロリー/グラム)は、肺組織のための所望の程度の損傷に応じて決定する必要がある。一般に、用量が増加するにつれて、組織への損傷の程度が増加する。約5カロリー/グラムから約40カロリー/グラムの蒸気の用量は、ほとんど熱固着なしに、それともに全く熱固着なしに凝固壊死を一般に引き起こす。1つの実施形態では、目標蒸気用量は約10カロリー/グラムである。熱固着の程度は、用量が40カロリー/グラムを超えて増加するときに一般に増加する。従って、肺組織への所望の程度の損傷は、該組織に適用される蒸気の用量を変えることにより制御することができる。1つの実施形態では、図1に示す発生器12の電子制御装置は、処置される肺葉、区域又は亜区域に供給される有効な蒸気用量を決定することができる。別の実施形態では、有効な蒸気用量は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0065] 壊死を引き起こすために、幾つかの実施形態におけるエネルギー用量は、約5カロリー/グラムから約40カロリー/グラムまで変化する。しかしながら、これらの限定は、以下に記載される他の供給パラメータ(例えば、供給割合、供給継続期間など)が前記組織への同様若しくは類似の損傷を実現するために適用される他の用量を許容し得るように、適用される用量の明確な限定であることを意図するものではない。]
[0066] ステップ710において、供給システムによって前記組織に適用する必要がある全エネルギー量が決定され得る。これは、供給する全エネルギー量を決定するために、ステップ708からの用量にステップ706からの処置される組織の量を掛け合わせることにより一般に行われる。例えば、用量(グラム当たりのカロリー)に組織の量(グラム)を掛け合わせると、目標組織に供給される全カロリー量になるであろう。1つの実施形態では、図1に示す発生器12の電子制御装置は、処置される肺葉、区域又は亜区域に供給システムによって適用される必要がある全エネルギー量を決定することができる。別の実施形態では、供給システムによって適用される必要がある全エネルギー量は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0067] ステップ712において、供給システムの流量が決定され得る。前記流量は一般に、約20カロリー/秒から約200カロリー/秒の間である。また、これらの限定は、明確な限定を意図するものではなく、供給割合は、他の処置及び/又は供給パラメータに応じて高くも低くもなり得る。1つの実施形態では、図1に示す発生器12の電子制御装置は、供給システムの流量を決定することができる。別の実施形態では、供給システムの流量は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0068] ステップ714において、前記方法はさらに、肺に蒸気を供給するための処置継続期間を決定することを含み得る。処置継続期間は、ステップ710からの供給される全エネルギー量(カロリー)をステップ712からのエネルギー流量(カロリー/秒)により分けることによって計算することができる。例えば、30カロリー/秒の流量で肺の区域に300カロリーを供給するためには、処置継続期間は、10秒になるであろう。1つの実施形態では、図1に示す発生器12の電子制御装置は、肺に蒸気を供給するための処置継続期間を決定することができる。別の実施形態では、肺に蒸気を供給するための処置継続期間は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0069] ステップ716において、ステップ712からの流量及びステップ714からの処置継続期間などの供給パラメータが供給システムにおいて設定され得る。これらのパラメータは一般に、図4のユーザ・インターフェースなどの供給システムにおいて制御を介して設定することができる。一旦ユーザが流量を設定すると、前記発生器は、該発生器において適用される熱量を調節することにより所望の流量で蒸気を供給するために発生器において必要な圧力の量を確定することができる。流量の設定を変更することは、発生器が該発生器内の圧力の量を調整することを引き起こし得る。蒸気発生器内の圧力は、例えば、約10psi(69kPa)から約100psi(689kPa)にわたって変動可能である。別の実施形態では、供給パラメータは、ユーザによって手動で設定される必要はないが、代わりに、例えば、発生器の電子制御装置によって自動的に設定され得る。] 図4
[0070] 処置時間は、容積、処置される質量及び組織への所望の損傷に応じて変更することができる。処置時間は、約2秒から約30秒まで変更することができる。肺の容積を低減するために壊死を引き起こす幾つかの実施形態では、安全で有効な処置時間は、約4秒から約10秒の間である。肺を熱的に固定するためには、例えば、より大きな損傷を組織に与えるために処置時間はより長くなり得る。]
[0071] ステップ718において、蒸気は、設定パラメータで患者の肺に投与され得る。]
[0072] 図8は、肺組織の容積及び/又は質量と肺組織内の空気の容積及び/又は質量とに基づいて患者の肺を処置するために処置パラメータを決定する方法を記載するフローチャート800である。フローチャート800の多くのステップは、図7のフローチャート700の前述したステップと同じである。ステップ802において、前記方法はさらに、処置される肺の状態又は疾患(例えば、COPD、肺腫瘍)を認定することを含み得る。COPD又は肺腫瘍などの肺の状態又は疾患を認定することは、周知の医学的検査及び処置によって実現することができる。] 図7 図8
[0073] ステップ804において、前記方法はさらに、処置される肺の少なくとも1つの肺葉、区域又は亜区域を撮像することを含み得る。処置される肺の区域又は亜区域を撮像することは、限定するものではないが、CT、MRI、超音波及びX線などの多くの医学的撮像技術によって行うことができる。]
[0074] ステップ806において、前記方法は、前記撮像に基づいて前記処置される肺葉、区域又は亜区域の肺組織の量(例えば、質量又は容積)を決定することを含み得る。このステップはまた、前記撮像に基づいて前記処置される肺葉、区域又は亜区域の肺組織内の空気の量(例えば、質量又は容積)を決定することを含む。処置される各肺の組織及び空気の量の容積及び/又は密度の決定は、前述したように、VIDA Emphysema Profilerソフトウェアのようなソフトウェアを使用して行うことができる。しかしながら、他のソフトウェア、アルゴリズム又は方法が、各肺、肺葉及び/又は区域の全容積を決定するために使用され得る。1つの実施形態では、図1に示す発生器12の電子制御装置は、処置される肺葉、区域又は亜区域の肺組織の量を決定することができる。別の実施形態では、肺組織の量は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0075] ステップ807において、前記方法は、ステップ806において集められたデータに基づいてどの肺、肺葉、及び/又は気管支の区域を処置するのか決定することを含み得る。肺のどの部分を処置するのか決定する第1の方法は、肺の異なる肺葉、区域、及び/又は亜区域の組織と空気の割合(Tissue-to-Air)(TAR)を計算し、処置計画にTARを使用することを含む。所定の肺葉又は区域のTAR値は、肺葉又は区域の組織の質量又は容積を肺葉又は区域内の空気の質量又は容積により分けることによって決定され、それらはともに、前記ステップ806において決定された。]
[0076] TAR値は、患者を治療するかしないかを決定するツールとして、投与する蒸気の用量、供給時間などを決定する因子として処置計画のために使用され得る、あるいはTAR値は、肺のどの区域を処置する必要があるかを決定するために使用され得る。]
[0077] TAR値が処置計画に使用され得る1つの例示的方法は、上葉のTARを下葉のTARと比較することによって、上葉を処置すること(あるいは代わりに、下葉を処置すること)が肺の全容積を有効に低減するかどうかを決定することである。上葉は一般に、気道壁に損傷を与えるために水蒸気が供給される肺葉であり、上葉が下葉より少ないTAR値を有する場合、上葉の処置が肺の容積を有効に低減することを示している。表1は、患者の計算されたTAR値の実施例である。]
[0078] ]
[0079] 表1を参照すると、右上葉のTARは9%であり、右下葉のTARは11%である一方、左上葉のTARは9%であり、左下葉のTARは11%である。TARの不均一性(すなわち、各肺のそれぞれの肺葉間のTARの割合)を計算することは、1つ若しくは両方の肺を処置する必要があるかどうかについての指標となり得る。一般に、肺の区域内の空気の容積が高くなればなるほど、その区域に残気量及び肺気腫が存在する可能性が高くなる。理論的には、肺の区域が肺の同じ階層レベルにある異なる区域より大きい空気の割合を有する場合、より大きい空気の割合を有する区域は、蒸気処置の恩恵を非常に受け、その区域の一部を虚脱させる。これは次に、理論的には肺の容積のより大きい低減を引き起こす。]
[0080] 表1には、左上葉が右上葉とほぼ等しく過膨張されており、そのことは、両方の上葉が、より良く機能する下葉(及び完全な肺全体)の膨張を含む右肺及び左肺の容積の低減を恐らく引き起こし得る良好な処置対象であることを示している。しかしながら、上葉及び下葉が共に、比較的低い、又は所定のレベル、例えば4%より低い場合、その処置は、効果的ではないかもしれない、あるいは処置から患者を除外する決定がなされるかもしれない。表2は、患者のTARの不均一性の値の実施例である。]
[0081] ]
[0082] 表2を参照すると、TARの不均一性は、それぞれの肺葉の間でのTARの割合の差である。この値は、肺において疾患がどの程度進んでいるのかの指標となり、どの肺又は肺のどの部分を処置するかを決定するときの別の因子として使用することができる。一般に、前記差又はTARの不均一性が大きくなればなるほど、疾患がより進行している。表2では、TARの不均一性の値がほぼ同じであり、それはまた、両方の肺が良好な処置対象であり得ることを示している。しかしながら、右肺のTARの不均一性が、左肺のTARの不均一性より大きい場合、そのことは次に、右肺が左肺に代えて処置される必要があることを示している。しかし、たとえ右肺のTARの不均一性が左肺のTARの不均一性より大きい場合でも、両方の肺がまだ蒸気エネルギーを用いて処置され得ることを理解すべきである。]
[0083] 処置計画のためにTARの値を使用する別の方法は、比較できる右肺葉と左肺葉のTARを比較する(例えば、右上葉を左上葉と比較する)ことである。1つの処置が片側の処置(左肺又は右肺のみに蒸気を供給する)だけを含む場合、肺の容積をより有効に低減するためにどの肺を処置する必要があるかについての決定がなされ得る。理論的には、低いTARを有する肺が、より疾患のある肺であり、患者は、その肺への処置を受けることによって恩恵を受けるであろう。しかしながら、処置が同じように両方になされてもよい。]
[0084] 蒸気エネルギーを用いてどの肺、肺葉、及び/又は肺の区域を処置するのかを決定するときのまた別の因子は、肺のかん流を計算することによって決定され得る。かん流は、肺への血流の大きさであり、当技術分野で周知の技術によって測定することができる。表3及び表4は、患者のかん流及び該かん流の不均一性の実施例を示す。]
[0085] ]
[0086] ]
[0087] 前記表3及び表4は、右上葉が左上葉より少ないかん流を有すること、及び右上葉が左上葉より大きい組織かん流の不均一性を有することを示している。右上葉におけるより少ない量のかん流とより大きいかん流の不均一性の割合とは、左肺よりもより疾患があることを示している。このデータは、処置が片側の処置である場合、右上葉が処置される場合に、処置がより有効であり得ることを示している。しかしながら、前述したように、別のデータは、両側の処置がまた有効であり得ることを示している。]
[0088] 一般に、肺の区域の処置は、用量を超えるという危険性を低減するために小さい大きさから大きい大きさの順番である必要がある。1つの実施例では、左肺の上葉が処置される場合、その順番は、LB1、LB2、LB3(又は同様に、LB1+2、LB3)であり得る。同様に、右肺の上葉が処置される場合、その順番は、RB1、RB2、RB3であり得る。前記区域のそれぞれは一般に、特定の区域の処置が実行することができない場合を除いて完全に処置される必要がある。様々な患者が異なる解剖学的構造を有し、その結果、処置の順番は患者によって異なることを理解すべきである。従って、小さい大きさの肺葉から大きい大きさの肺葉がいつもLB1、LB2、LB3などではないかもしれない。]
[0089] 前記実施例では、患者の上葉の処置に中心を置いた議論であることに注目すべきである。これは、上葉に疾患を有するより多くの患者が存在し、下葉は一般にアクセスするのが非常に困難であるからである。しかしながら、ユーザ又は臨床医が下葉を処置する必要があることを決定する場合、同じ原理が、同様の結果を有する患者の下葉を処置するために適用され得る。1つの実施形態では、図1に示す発生器12の電子制御装置は、処置される肺葉、区域、又は亜区域の肺組織のTAR、TARの不均一性、かん流、及びかん流の不均一性を決定することができる。別の実施形態では、これらの値は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0090] ステップ808において、前記方法はさらに、拠点とされる肺葉、区域又は亜区域に供給される有効な蒸気の用量を決定することを含み得る。肺組織に適用される安全で有効なエネルギー用量(例えば、カロリー/グラム)は、肺組織のための所望の程度の損傷に応じて決定する必要がある。一般に、用量が増加するにつれて、前記組織への損傷の程度が増加する。約5カロリー/グラムから約40カロリー/グラムの蒸気の用量は、ほとんど熱固着なしに、それともに全く熱固着なしに凝固壊死を一般に引き起こす。1つの実施形態では、理想的な目標蒸気用量は約10カロリー/グラムである。熱固着の程度は、用量が40カロリー/グラムを超えて増加するときに一般に増加する。従って、肺組織への所望の程度の損傷は、該組織に適用される蒸気の用量を変えることにより制御することができる。1つの実施形態では、図1に示す発生器12の電子制御装置は、処置される肺葉、区域又は亜区域に供給される有効な蒸気用量を決定することができる。別の実施形態では、有効な蒸気用量は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0091] 壊死を引き起こすために、幾つかの実施形態におけるエネルギー用量は、約5カロリー/グラムから約40カロリー/グラムまで変化する。しかしながら、これらの限定は、以下に記載される他の供給パラメータ(例えば、供給割合、供給継続期間など)が前記組織への同様若しくは類似の損傷を実現するために適用される他の用量を許容し得るように、適用される用量の明確な限定であることを意図するものではない。]
[0092] ステップ810において、供給システムによって前記組織に適用する必要がある全エネルギー量が決定され得る。これは、供給する全エネルギー量を決定するために、ステップ808からの用量に、ステップ806からの処置される組織の量を掛け合わせることにより一般に行われる。例えば、用量(グラム当たりのカロリー)に組織の量(グラム)を掛け合わせると、目標組織に供給される全カロリー量になるであろう。1つの実施形態では、図1に示す発生器12の電子制御装置は、処置される肺葉、区域又は亜区域に供給システムによって適用される必要がある全エネルギー量を決定することができる。別の実施形態では、供給システムによって適用される必要がある全エネルギー量は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0093] ステップ812において、供給システムの流量が決定され得る。前記流量は一般に、約20カロリー/秒から約200カロリー/秒の間である。1つの実施形態では、前記流量は、40カロリー/秒である。また、これらの限定は、明確な限定を意図するものではなく、供給割合は、他の処置及び/又は供給パラメータに応じて高くも低くもなり得る。1つの実施形態では、図1に示す発生器12の電子制御装置は、供給システムの流量を決定することができる。別の実施形態では、供給システムの流量は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0094] ステップ814において、前記方法はさらに、肺に蒸気を供給するための処置継続期間を決定することを含み得る。処置継続期間は、ステップ810からの供給される全エネルギー量(カロリー)をステップ812からのエネルギー流量(カロリー/秒)により分けることにより計算することができる。例えば、30カロリー/秒の流量で肺の区域に300カロリーを供給するためには、処置継続期間は、10秒になるであろう。処置継続期間は一般に、3秒から10秒の間である。10秒より長い処置継続期間は、安全上の理由で薦められず、3秒より短い処置継続期間は一般に有効ではない。1つの実施形態では、図1に示す発生器12の電子制御装置は、肺に蒸気を供給するための処置継続期間を決定することができる。別の実施形態では、肺に蒸気を供給するための処置継続期間は、医師又は臨床医によるなど、発生器とは無関係に決定され得る。] 図1
[0095] ステップ816において、ステップ812からの流量及びステップ814からの処置継続期間などの供給パラメータが、供給システムにおいて設定され得る。これらのパラメータは一般に、図4のユーザ・インターフェースなどの供給システムにおいて制御を介して設定することができる。一旦ユーザが流量を設定すると、発生器は、該発生器において適用される熱量を調節することにより所望の流量で蒸気を供給するために発生器において必要な圧力の量を確定することができる。流量の設定を変更することは、発生器が該発生器内の圧力の量を調整することを引き起こし得る。蒸気発生器内の圧力は、例えば、約10psi(69kPa)から約100psi(689kPa)にわたって変動可能である。別の実施形態では、供給パラメータは、ユーザによって手動で設定される必要はないが、代わりに、例えば、発生器の電子制御装置によって自動的に設定することができる。] 図4
[0096] 処置時間は、容積、処置される質量及び組織への所望の損傷に応じて変更することができる。処置時間は、約2秒から約30秒まで変更することができる。肺の容積を低減するために壊死を引き起こす幾つかの実施形態では、安全で有効な処置時間は、約4秒から約10秒の間である。肺を熱的に固定するためには、例えば、組織により大きい程度まで損傷を与えるために処置時間はより長くなり得る。]
[0097] ステップ818において、蒸気は、設定パラメータで患者の肺に投与され得る。]
[0098] 図9から図13は、フローチャート800に関して前述したTAR、TARの不均一性、及びかん流データを有する患者などの患者の肺の気管支の種々の区域への蒸気の投与(例えば、ステップ818における蒸気の投与)を示す図である。処置中、用量のパラメータ限界の範囲内で使用することができる最小限の分岐に用量を供給するために、できるだけはるかに下の各分岐を処置することが一般に好ましい。従って、亜亜区域(sub-sub-segment)レベルにある処置が最も好ましく、次に亜区域レベルにある処置、その後に最終的に区域レベルにある処置がある。]
[0099] 図9Aは、前述した患者の左上葉のLB1、LB2及びLB3の区域の概略図である。この特定の患者において、LB1及びLB2の区域は、LB1+2の区域を形成するために結合する。一部の患者は、LB1+2などの結合された区域を有し、一部の患者は、それを有していない。図9Aに関連して記載された実施例はLB1+2の区域を含んでいるが、別の患者の区域の構造が異なり得ることを理解すべきである。図9Bは、患者の左上葉のLB1、LB2及びLB3の区域の断面図であり、気管支の内部からLB1、LB2及びLB3の区域を見た図を示している。区気管支の相対位置と患者のLB1+2及びLB3区域のそれぞれの断面積とは、図9A及び図9Bを参照することにより臨床医によって視覚化することができる。] 図9A 図9B
[0100] 図9Cは、患者の左上葉のLB1及びLB2の区域又は肺尖後LB1+2の区域への蒸気の投与の間、臨床医によって使用される処置計画又は処置ガイドを示している。図9A及び図9Bに示される図面及び図9Cに示される処置ガイドは、処置中、臨床医又は医師によって使用するために供給システムのモニタ又はユーザ・インターフェースに表示することができる。別の実施形態では、図9Aから図9Cに示される情報は、前記撮像及び前述した計算されたデータ(すなわち、組織の容積/質量、TAR、かん流など)に基づいて計算された試案又は図表であり得る。] 図9A 図9B 図9C
[0101] 図9Cの表5は、肺尖後区域LB1+2の区域の容積902、区域の質量904、上葉の割合906、TAR908、及びかん流910を示す。区域の容積、質量及び肺葉の割合は、例えば、肺を撮像し、図8のステップ806におけるソフトウェア又は他のアルゴリズムを用いてパラメータを引き出す、及び/又は計算することによるなど、前述したように決定することができる。TAR及びかん流は、例えば、図8のステップ807において前述したように計算することができる。] 図8 図9C
[0102] 図9Cの表6は、目標蒸気用量912、蒸気用量下限値914、蒸気用量上限値916、及び流量設定又は流量918を示す。目標蒸気用量又は流量は、図8のステップ808において前述したように臨床医によって決定することができる。表6に示される実施例では、目標蒸気用量は、10カロリー/グラムであるように選択され、流量設定6は、40カロリー/秒という流量に対応する。蒸気用量の上限値及び下限値は一般に、肺に施される所望の種類の損傷及び健康のために考慮すべき他の事柄に基づいて選ばれる。この実施例では、用量下限値は、7.5カロリー/グラムに設定され、用量上限値は、10カロリー/グラムに設定される。流量設定は、所望の目標蒸気用量を実現するために供給システムにおいてどんな設定を使用するかについて臨床医又は医師への指標である。] 図8 図9C
[0103] 図9Cはまた、LB1+2の区域、並びにLB1+2区域より遠位の亜区域920及び亜亜区域922の概略図を含む。表7、表8及び表9は、処置時間923を秒で示し、前記図8のステップ810において計算された全エネルギー量を供給するために要する蒸気用量924をカロリー/グラムで示す。区域の質量は、38グラムであり、目標蒸気用量は、10カロリー/グラムであるので、LB1+2の区域に供給する全エネルギー量は、380カロリーである。380カロリーを40カロリー/秒の流量で分けると、区域レベルでLB1+2において処置する10カロリー/グラムという実際の用量において処置時間が9.5秒という結果になる。] 図8 図9C
[0104] 図9Cの表8及び表9では、亜区域及び亜亜区域レベルでの処置が、この実施例では薦められないこと(DNT、すなわち「処置禁止」)を見ることができる。これは、亜区域及び亜亜区域レベルのために計算された処置時間が処置継続期間の所定範囲外であるためである。この所定の処置継続期間の範囲は一般に、3秒から10秒の間である。表8の隣に位置するアイコン926、928及び930は、亜区域又は亜亜区域レベルでの処置が可能である場合に、処置時間を決定するために医師によって使用されるものである。これらのアイコンは、以下でさらに詳細に説明する。] 図9C
[0105] 図10Aは、左上葉のLB1、LB2及びLB3の区域の概略図である。図10Bは、左上葉のLB1、LB2及びLB3の区域の断面図であり、気管支の内部からLB1、LB2及びLB3の区域を見た図を示している。] 図10A 図10B
[0106] 図10Cは、左上葉のLB3の区域に蒸気を投与する間、臨床医によって使用される処置計画又は処置ガイドを示している。LB3の区域の処置は、図9Aから図9Cに関して前述した同じ原理に従って施すことができる。] 図10C 図9A 図9C
[0107] 図10Cでは、LB3の質量が43グラムであり、目標蒸気用量が10カロリー/グラムであることによって、区域に供給される全エネルギー量が430カロリーという結果になる。しかしながら、40カロリー/秒という流量で、最大処置時間が10秒である場合において、LB3の区域レベルで区域に供給され得る最大用量は、図10Cの表12に示すように、9.4カロリー/グラムという用量である。これは、準最適用量であり得るので、医師は、最適用量(すなわち、10カロリー/グラム)を使用して亜区域又は亜亜区域レベルでLB3区域を処置することを考えることができる。] 図10C
[0108] 図10Cの表13及び表14は、亜区域及び亜亜区域レベルでLB3の処置のための処置時間923及び蒸気用量924を示している。表13は、処置時間及び用量の3つの列を含み、各列は、アイコン926、928及び930などのアイコンに対応する。アイコンは、それぞれの各亜区域でどの処置時間を使用するかを決定するために医師によって使用されるものである。この実施例においてどの処置時間を使用するかを決定するために、医師は、図10Cの概略図に示されるように2つの亜区域に分岐する亜区域レベルに到達するまでLB3の区域へ肺の内部へ供給システムを前進させることができる。] 図10C
[0109] 一旦、医師が、亜区域レベルにカテーテル又は気管支鏡を位置付けると、医師は、2つの亜区域の相対的な断面積を観察することができる。アイコン926に示すように、亜区域がほぼ同じ大きさである場合、そのときは表13の第1列からの処置時間及び用量を使用すべきである。アイコン928に示すように、亜区域が互いにほぼ1対2の割合、すなわち33%対66%である場合、そのときは表13の第2列からの処置時間及び用量を使用すべきである。同様に、アイコン930に示すように、亜区域が互いにほぼ1対3の割合、すなわち25%対75%である場合、そのときは表13の第3列からの処置時間及び用量を使用すべきである。]
[0110] 医師が、亜亜区域レベルで処置したい場合、そのときは亜亜区域の相対的な大きさを概算することは必要ではなく、表14に示すように、各亜亜区域を同じ用量及び処置時間を用いて処置することができる。]
[0111] 一般に、医師又は臨床医は、区域レベル、亜区域レベル、又は亜亜区域レベルで処置するかどうかについて判断をすることが必要である。これらの決定は一般に、医師がカテーテル又は気管支鏡などを用いて処置すべき組織を検査した時点でなされるであろう。処置すべき組織を見ると、医師は、気道が遮断される又は閉塞されることを決定することができる、あるいは組織が気道を閉鎖するためにカテーテル先端から閉塞バルーンを配置するのに十分な管腔長さを有していないことを見ることができる。従って、亜亜区域レベルにおける処置が望まれ得るものの、そのレベルにおいて実際に処置することがいつもできると限るものではなく、区域又は亜区域レベルにおける処置が医師によって考えられる必要がある。]
[0112] 図11から図13は、RB1、RB2及びRB3の区域を含むこの実施例の右上葉を処置するための処置計画及び処置ガイドを示している。処置用量、処置時間、及び処置位置を決定するための図9及び図10に関して前述した原理は、右上葉の処置のための図11から図13に適用することができる。]
[0113] 処置計画における更なる因子は、蒸気処置をもたらすあらゆる異常が患者の肺に存在するかを決定するために三次元気道再構成を用いることである。例えば、三次元気道再構成が肺の虚脱部分を示す場合、蒸気処置がその区域にほとんど効果を有しないことの指標となり得る。従って、虚脱された気道を用いて虚脱部分に蒸気を投与することはカテーテルがその領域に入ることができないために実行できない、及び/又は、肺の容積を低減するためにほとんど効果がないこと、並びに、蒸気が肺の異なる区域に供給される必要があることを決定することができる。]
[0114] 前述した処置計画は、患者に特有の処置を作り出すために使用され得る。三次元再構成モデル、TAR値、及び区域の空気の割合は、患者によって異なるであろう。定性的にあるいは定量的にこれらのツールを分析することができることは、肺の容積を低減するために患者に蒸気を供給するための処置の最善策を決定するのに役立ち得る。さらに、これらの因子は、患者が前記処置の受け手であるかそうでないかを決定するために排他的なツールとして使用することができる。]
[0115] 本発明の好ましい実施形態が本明細書に示され記載されているが、当業者にはそのような実施形態が実施例としてのみ付与されていることが明らかであろう。多数の変形、変更及び代替が、本発明から逸脱することなく当業者に考えられ得る。本明細書に記載される本発明の実施形態における種々の代替案が、本発明を実行するために用いられ得ることが理解されるべきである。以下の請求項は本発明の範囲を規定し、これらの請求項の範囲内の方法及び構造並びにそれらの同等物が該請求項に含まれることが意図されている。]
权利要求:

請求項1
選択的に肺組織に損傷を与えるために蒸気を用いて肺組織にエネルギーを適用するための処置パラメータを決定する方法であって、肺組織の処置される少なくとも1つの区域を撮像することと、前記撮像に基づいて前記処置される区域の質量を決定することと、肺組織への特有の程度の損傷を引き起こすために前記処置される区域を処置するための安全で有効な用量を決定することと、前記処置される区域の質量及び前記用量に基づいて前記処置される区域に供給されるエネルギーの量を決定することと、供給される前記エネルギーの量及び蒸気供給システムのエネルギー流量に基づいて蒸気を供給する継続期間を決定することと、を有することを特徴とする方法。
請求項2
前記肺組織への特有の程度の損傷は凝固壊死を含む、ことを特徴とする請求項1に記載の方法。
請求項3
前記凝固壊死は、前記処置される区域の容積を有効に低減する前記区域の線維症を引き起こす、ことを特徴とする請求項2に記載の方法。
請求項4
前記供給割合で前記決定された継続期間、前記処置される区域に蒸気を供給することをさらに有する、ことを特徴とする請求項1に記載の方法。
請求項5
蒸気を供給する前に少なくとも100℃まで蒸気を加熱することをさらに有する、ことを特徴とする請求項4に記載の方法。
請求項6
前記処置される少なくとも1つの区域を撮像することは、前記区域のCTスキャンをとることを含む、ことを特徴とする請求項1に記載の方法。
請求項7
前記処置される少なくとも1つの区域は、RB1、RB2、RB3、LB1、LB2及びLB3の少なくとも1つを含む、ことを特徴とする請求項1に記載の方法。
請求項8
供給されるエネルギーの量を決定することは、前記処置される区域の質量と前記用量とを掛け合わせることを含む、ことを特徴とする請求項1に記載の方法。
請求項9
蒸気を供給する継続期間は、供給されるエネルギーの量を前記供給システムのエネルギー流量により分けることによって決定される、ことを特徴とする請求項1に記載の方法。
請求項10
蒸気を供給することは、蒸気を液体に変化させ、それによって相変化の間に放出されるエネルギーが、前記区域の肺組織に移動される、ことを特徴とする請求項4に記載の方法。
請求項11
前記組織を処置するための安全で有効な用量は、約5カロリー/グラムから約40カロリー/グラムの間である、ことを特徴とする請求項1に記載の方法。
請求項12
前記供給システムのエネルギー流量は、約20カロリー/秒から約200カロリー/秒の間である、ことを特徴とする請求項1に記載の方法。
請求項13
前記処置される少なくとも1つの区域内の空気の質量を決定することをさらに有する、ことを特徴とする請求項1に記載の方法。
請求項14
前記処置される少なくとも1つの区域の質量を前記処置される少なくとも1つの区域内の空気の質量により分けることによって少なくとも1つの組織と空気の割合を計算することをさらに有する、ことを特徴とする請求項13に記載の方法。
請求項15
前記組織と空気の割合が所定のレベルを超える場合、前記供給割合で前記決定された継続期間、前記処置される区域に蒸気を供給することを有する、ことを特徴とする請求項14に記載の方法。
請求項16
前記所定のレベルは、4%である、ことを特徴とする請求項15に記載の方法。
請求項17
肺の上葉の組織と空気の割合が肺の下葉の組織と空気の割合より少ない場合、肺の上葉に蒸気を供給することをさらに有する、ことを特徴とする請求項14に記載の方法。
請求項18
肺の下葉の組織と空気の割合が肺の上葉の組織と空気の割合より少ない場合、肺の下葉に蒸気を供給することをさらに有する、ことを特徴とする請求項14に記載の方法。
請求項19
第1の肺の組織と空気の割合が第2の肺の組織と空気の割合より少ない場合、第1の肺に蒸気を供給することをさらに有する、ことを特徴とする請求項14に記載の方法。
請求項20
蒸気が第1の肺の上葉に供給される、ことを特徴とする請求項19に記載の方法。
請求項21
蒸気が第1の肺の下葉に供給される、ことを特徴とする請求項19に記載の方法。
請求項22
肺の上葉のかん流が肺の下葉のかん流より少ない場合、肺の上葉に蒸気を供給することをさらに有する、ことを特徴とする請求項22に記載の方法。
請求項23
肺の下葉のかん流が肺の上葉のかん流より少ない場合、肺の下葉に蒸気を供給することをさらに有する、ことを特徴とする請求項22に記載の方法。
請求項24
第1の肺のかん流の不均一性が第2の肺のかん流の不均一性より大きい場合、第1の肺に蒸気を供給することをさらに有する、ことを特徴とする請求項22に記載の方法。
請求項25
肺の容積を低減するために蒸気を用いて肺の組織にエネルギーを適用するための処置パラメータを決定する方法であって、肺組織の処置される少なくとも1つの区域を撮像することと、前記撮像に基づいて前記処置される区域の質量を決定することと、肺の容積の低減を引き起こすために前記処置される区域を処置するための安全で有効な用量を決定することと、前記処置される区域の質量及び前記用量に基づいて前記処置される区域に供給されるエネルギーの量を決定することと、供給されるエネルギーの量及び蒸気供給システムのエネルギー流量に基づいて蒸気を供給するための継続期間を決定することと、を有することを特徴とする方法。
請求項26
選択的に肺組織に損傷を与えるために、処置パラメータを決定し、蒸気を用いて肺組織にエネルギーを適用するためのシステムであって、加熱された水蒸気を発生させるように構成される蒸気発生器と、前記蒸気発生器に連結される供給カテーテルと、前記処置される区域の質量及び用量に基づいて前記処置される区域に供給されるエネルギーの量を決定するように構成され、また、供給されるエネルギーの量及び前記蒸気発生器のエネルギー流量に基づいて蒸気を供給するための継続期間を決定するように構成される電子制御装置と、を有することを特徴とするシステム。
請求項27
前記処置される区域の質量が前記肺組織の画像から決定される、ことを特徴とする請求項26に記載のシステム。
請求項28
前記質量が前記電子制御装置によって前記肺組織の画像から決定される、ことを特徴とする請求項27に記載のシステム。
类似技术:
公开号 | 公开日 | 专利标题
JP6291603B2|2018-03-14|組織の治療のためのデバイスおよび方法
US9788886B2|2017-10-17|Methods and devices to treat nasal airways
US10363091B2|2019-07-30|Systems, apparatuses, and methods for treating tissue and controlling stenosis
Herth et al.2016|Segmental volume reduction using thermal vapour ablation in patients with severe emphysema: 6-month results of the multicentre, parallel-group, open-label, randomised controlled STEP-UP trial
US20180199993A1|2018-07-19|Delivery devices with coolable energy emitting assemblies
US10561458B2|2020-02-18|Methods for treating airways
US10010364B2|2018-07-03|Devices and methods for detection and treatment of the aorticorenal ganglion
US10149714B2|2018-12-11|Systems, assemblies, and methods for treating a bronchial tree
US10610283B2|2020-04-07|Non-invasive and minimally invasive denervation methods and systems for performing the same
Kim et al.2014|Which method is more effective in treatment of calcific tendinitis in the shoulder? Prospective randomized comparison between ultrasound-guided needling and extracorporeal shock wave therapy
US20150223877A1|2015-08-13|Methods and systems for treating nerve structures
US9358024B2|2016-06-07|Methods for treating airways
Nahlieli et al.2006|Sialoendoscopy: a new approach to salivary gland obstructive pathology
US20160074114A1|2016-03-17|Congestive Obstruction Pulmonary Disease |
ES2235333T3|2005-07-01|Aparato para provocar necrosis celular mediante energia electromagnetica.
Snell et al.2009|A feasibility and safety study of bronchoscopic thermal vapor ablation: a novel emphysema therapy
US8733367B2|2014-05-27|Methods of treating inflammation in airways
JP5422389B2|2014-02-19|電極マーカ
US9474847B2|2016-10-25|Methods and devices for controlling biologic microenvironments
US20190142510A1|2019-05-16|Apparatuses and methods for injuring nerve tissue
US10806501B2|2020-10-20|Device and method for lung treatment
Tatsui et al.2015|Utilization of laser interstitial thermotherapy guided by real-time thermal MRI as an alternative to separation surgery in the management of spinal metastasis
CN103415319B|2016-09-21|用于患者的交感再平衡的方法
Onerci2002|Dacryocystorhinostomy. Diagnosis and treatment of nasolacrimal canal obstructions.
Minami et al.2015|Per‐oral endoscopic myotomy: E merging indications and evolving techniques
同族专利:
公开号 | 公开日
EP2265206A4|2012-05-02|
AU2009251704B2|2014-11-13|
WO2009145975A3|2010-04-22|
CA2718667A1|2009-12-03|
WO2009145975A2|2009-12-03|
EP2265206A2|2010-12-29|
BRPI0908909A2|2019-09-24|
CA2718667C|2019-11-19|
AU2009251704B9|2015-05-21|
AU2009251704A1|2009-12-03|
EP2265206B1|2018-10-17|
JP5719761B2|2015-05-20|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2012-02-28| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120227 |
2012-02-28| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120227 |
2013-05-24| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130523 |
2013-06-05| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130604 |
2013-09-03| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130902 |
2013-09-10| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130909 |
2013-10-04| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20131003 |
2013-10-11| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20131010 |
2013-11-02| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131101 |
2013-12-04| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131203 |
2015-03-26| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150323 |
2015-03-27| R150| Certificate of patent or registration of utility model|Ref document number: 5719761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2016-09-29| S111| Request for change of ownership or part of ownership|Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
2016-10-07| R350| Written notification of registration of transfer|Free format text: JAPANESE INTERMEDIATE CODE: R350 |
2018-03-13| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2019-03-26| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-02-28| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2021-02-26| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]